روش نقاط متناهی برای حل معادلات دیفرانسیل با مشتقات پاره ای

پایان نامه
چکیده

در این پایان نامه ابتدا روش نقاط متناهی و همگرایی آن برای معادلات دیفرانسیل با مشتقات پاره ای خطی مورد تحلیل قرار می گیرد. سپس کارایی این روش برای حل معادلات مستقل از زمان در نواحی نامنظم، همچنین معالات وابسته به زمان در نواحی بزرگ بررسی می شود. علاوه بر این، بحث پایداری این روش برای معادلات وابسته به زمان در حالاتی خاص مطرح می شود. مثال ها و نتایج عددی ارایه شده در هر فصل، کارایی و دقت روش مطرح شده را به خوبی نشان می دهد. در فصلهای مختلف این پایان نامه روش نقاط متناهی برای حل معادلات متفاوت در نواحی پیچیده پیاده سازی شده است

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری

عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...

متن کامل

بررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری

عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتق...

متن کامل

روش تفاضل متناهی فشرده برای معادلات دیفرانسیل با مشتقات پاره ای کسری

این پایان نامه از سه قسمت تشکیل شده است. در قسمت اول سه نوع از مهم ترین توابع خاص ریاضی معرفی می شوند که نقش کلیدی در حسابان کسری دارند. در ادامه با معرفی چند رویکرد، مفهوم مشتق و انتگرال مرتبه ی صحیح به مفهوم مشتق و انتگرال مرتبه ی کسری تعمیم داده می شود و تعاریف گرونوالد-لتنیکوف، ریمان-لیوویل و کاپاتو برای مشتق و انتگرال مرتبه ی کسری به دست می آیند. در آخر به بیان خواصی از این تعاریف و رابطه ...

15 صفحه اول

ساختن روش‌های تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه

In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...

متن کامل

حل معادلات دیفرانسیل پاره ای غیر خطی با استفاده از روش های تفاضل متناهی فشرده

در این پایان نامه به ارایه روش های تفاضل متناهی فشرده مرتبه 4و6 برای مشتقات مکانی مرتبه اول و دوم پرداخته ایم و در گام زمانی از روش مک کورمک(الگوریتم پیشگو-اصلاحگر)و روش رونگه-کوتا صریح tvdاستفاده کرده ایم .معادلات غیر خطی برگرز ،برگرز_فیشر،انتقال حرارت غیر خطی و خطی و هوکسلی -برگرز تعمیم یافته با استفاده از این روش ها حل شده اند.در فصل آخر با استفاده از روش تفاضل متناهی فشرده به حل عددی معادله...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023